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a b s t r a c t

This paper develops a sampled-data (SD) controller for uncertain multi-input multi-output (MIMO) sys-
tems, possibly with non-minimum phase zeros, using the L1 adaptive control architecture. The proposed
controller compensates for disturbances and uncertainties within the bandwidth of a low-pass filter.
Sufficient conditions for robust stability are obtained for the closed-loop systemwith SD controller, where
the input/output signals are held constant over a sampling period. It is shown that the hybrid closed-loop
system can recover the performance of a continuous-time reference system as the sampling time of the
SD controller tends to zero. Simulation examples are provided to validate the theoretical findings.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Most controllers in modern cyber–physical systems (CPS) are
implemented on digital computers using sample and hold mecha-
nisms,where the control systems can be dealtwith in the sampled-
data (SD) framework. The SD nature of controller implementation
plays significant role in the analysis of infrastructures such as
power grids, transportation, and financial systems (Chen & Fran-
cis, 1995; Naghnaeian, Hirzallah, & Voulgaris, 2015; Nesic & Teel,
2004). The controller design in the SD framework can potentially
address uncertainties in CPS, which involve digital controllers in-
teracting with physical systems.

SD control systems are extensively analyzed in the literature
(Dullerud & Glover, 1993; Fridman, 2010; Sivashankar & Khar-
gonekar, 1994). The SD control designs are mainly based on the
controller emulationmethods,where an SD controller is developed
in two stages; first, a continuous-time controller which satisfies
certain performance/robustness requirements is designed; next,
a discrete-time controller is obtained for digital implementation
using an approximation technique (Chu, Qian, Yang, Xu, & Liu,
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2015; Lin & Wei, 2016; Nesic, Teel, & Carnevale, 2009). The main
issue in this approach is the selection of the sampling period that
guarantees stability of the SD systemwith the emulated controller.
In practice, the sampling period cannot be chosen arbitrarily small
due to hardware limitations, such as the limits in central process-
ing unit (CPU) and communication links. On the other hand, a
larger sampling period reduces the performance and robustness of
digital controllers. The conditions under which the SD controllers
recover the properties of the underlying continuous-time design
are investigated inNesic et al. (2009) and Teel, Nesic, andKokotovic
(1998).

In Ahmed Ali, Langlois, and Guermouche (2014), Khalil (2004)
and Ahrens, Tan, and Khalil (2009), the problem of SD output-
feedback control is addressed by introducing high-gain observers
to estimate the unmeasured states. Output-feedback stabilization
of nonlinear systems with SD control has been studied in Lam
(2012) and Shim and Teel (2003). Refs. Chu et al. (2015), Lin and
Wei (2016, 2017), Liu, Ma, and Jia (2016), Qian and Du (2012) and
Zhang and Yang (2016) have addressed the problem of SD output-
feedback control for systems with uncertainties and disturbances
for a class of single-input single-output (SISO) nonlinear systems
under a lower-triangular linear growth condition. In Lin and Wei
(2016, 2017), non-minimum phase nonlinear systems are consid-
ered. Nonlinear sampled-data systems with full state-feedback are
addressed in Guillaume, Bastin, and Campion (1994), Wu and Ding
(2007) and Laila, Navarro-López, and Astolfi (2011).

This paper develops an SD output-feedback control approach
for nonlinear uncertain MIMO systems, using the L1 adaptive
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control structure. TheL1 adaptive control theory is extended to the
SD framework, whilemaintaining the key benefits of a continuous-
time L1 controller implementation (Cao & Hovakimyan, 2008,
2009, 2010; Hovakimyan & Cao, 2010). Compared to continuous-
time design, the SD approach of this paper provides a more ac-
curate model for CPS, with hybrid discrete/continuous nature.
Conditions are derived, under which the SD controller uniformly
recovers the performance of the underlying continuous-time con-
trol design. The unknown nonlinearities are assumed to be locally
Lipschitz. In addition, the system under consideration can have
non-minimum phase dynamics in this paper. The controller com-
pensates for disturbances within the bandwidth of a lowpass filter,
and similar to other L1 controllers, achieves uniform transient
and steady-state performance. In this paper, using the method
of controller emulation, a discrete-time L1 adaptive controller is
derived froma continuous-time reference system. Uniformbounds
between the response of the closed-loop SD system and the ref-
erence system are derived, which can be made arbitrarily small
as the sampling time tends to zero. We notice that the perfor-
mance of L1 adaptive controller has been verified on manned
and unmanned aerial vehicles, as well as several high-fidelity
simulation models (Ackerman et al., 2016; Sun, Choe, Xargay, &
Hovakimyan, 2016; Xargay, Hovakimyan, Dobrokhodov, Kaminer,
Cao, & Gregory, 2012).

The rest of the paper is organized as follows. Section 2 presents
the problem formulation. In Section 3, the structure of the digital
controller is presented. The closed-loop SD system is analyzed
in Section 4. Section 5 presents a simulation example. Finally,
Section 6 concludes the paper.

2. Problem formulation

Throughout this paper, ∥xτ∥L∞
denotes the L∞ norm of the

truncated signal xτ (t) for original x(t) ∈ Rn, given as

xτ (t) = x(t), ∀t ≤ τ ,

xτ (t) = 0n×1, otherwise.

The notation ∥·∥p represents vector or matrix p-norms with 1 ≤

p ≤ ∞. The right pseudo-inverse of a full row-rank matrix A ∈

Rq×n is denoted by A† , and can be computed as A†
= A⊤

(
AA⊤

)−1

such that AA†
= Iq. Finally, s is used for the Laplace transform.

Consider the following MIMO system

ẋ(t) = Apx(t) + Bp (u(t) + f (t, x(t))) , x(0) = x0,
y(t) = Cpx(t),

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the input
signal, and y(t) ∈ Rq is the system output vector. Also, {Ap ∈

Rn×n, Bp ∈ Rn×q, Cp ∈ Rq×n
} is a known observable-controllable

triple. The unknown initial condition x0 ∈ Rn is assumed to be
inside an arbitrarily large set, so that ∥x0∥∞ ≤ ρ0 < ∞ for
some known ρ0 > 0. Let f (t, x) ∈ Rq represent the time-varying
uncertainties, physical failures, and disturbances subject to the
following assumption.

Assumption 1. There exist Kδ for arbitrary δ > 0, and constant
L0 > 0 such that

∥f (t, x2) − f (t, x1)∥∞ ≤ Kδ∥x2 − x1∥∞,

∥f (t, 0)∥∞ ≤ L0,

hold for all ∥xi∥∞ ≤ δ, i ∈ {1, 2}, uniformly in t ≥ 0.

The control input, which is implemented via a zero-order hold
mechanism with the time period of Ts > 0, is given by

u(t) = ud[i], t ∈ [iTs, (i + 1)Ts) , i ∈ Z≥0, (2)

where ud[i] is a discrete-time control input signal. The output y(t)
is sampledwith the sampling timeof Ts, such that the discrete-time
output measurement yd[i] is given by

yd[i] = y (iTs) . (3)

Assumption 2. The desired dynamics are defined by

M(s) ∆
= Cm

(
sInm − Am

)−1 Bm, (4)

where the triple {Am ∈ Rnm×nm , Bm ∈ Rnm×q, Cm ∈ Rq×nm}

represents a minimal state–space realization. The desired system
M(s) should satisfy one of the following conditions:

• the triple (Am, Bm, Cm) is selected such that CmBm is nonsin-
gular,Am is Hurwitz, andM(s) does not have a non-minimum-
phase transmission zero,

• or, if the system defined by (Ap, Bp, Cp) does not have a non-
minimum-phase transmission zero, one can select

Am = Ap − BpF , Bm = Bp, Cm = Cp, (5)

where F ∈ Rq×n is selected such that Ap − BpF is Hurwitz. In
this case CmBm can be rank deficient.

The desired response ym(t) is given by the Laplace transform
ym(s) = M(s)Kgr(s), where

Kg
∆
= −

(
CmA−1

m Bm
)−1

,

and r(s) is the Laplace transform of r(t) given by

r(t) = rd[i], t ∈ [iTs, (i + 1)Ts) , i ∈ Z≥0, (6)

where rd[i] is a given discrete-time reference command. The com-
mand signal is assumed to be bounded, such that ∥rd[i]∥∞ ≤

Mr, i ∈ Z≥0, whereMr is a known positive constant.

In the following, a sampled-data L1 adaptive controller is for-
mulated for cyber–physical systems to compensate for physical
failures, uncertainties, and disturbances, such that the output y(t)
of the system in (1) tracks the desired response ym(t).

3. The proposed adaptive sampled-data controller

In this section, the proposed adaptive SD controller is presented.
The conditions for selection of the control parameters and the de-
tailed analysis of the closed-loop system are provided in Section 4.
Elements of the output-feedback L1 adaptive SD controller are
given next.

Let Ts > 0 be the sampling time of the digital controller.
Consider a strictly proper stable transfer function C(s) such that
C(0) = Iq. In the L1 adaptive control structure, C(s) repre-
sents the low-pass filter at the control input (Hovakimyan &
Cao, 2010). Also, define O(s) ∆

= C(s)M−1(s)Cm
(
sInm − Am

)−1, and
let
{
Ao ∈ Rv×v, Bo ∈ Rv×q, Co ∈ Rq×v

}
be a minimal state-space

realization such that

Co(sIv − Ao)
−1Bo = O(s). (7)

The control law is given by

xu[i + 1] = eAoTsxu[i] + A−1
o

(
eAoTs − Iv

)
Boe−AmTs σ̂d[i],

ud[i] = Kgrd[i] − Coxu[i], xu[0] = 0, i ∈ Z≥0,
(8)

where σ̂d[·] ∈ Rn is given by the adaptation law in (13), and rd[·] is
a given discrete-time reference command.

The output predictor is given by

x̂d[i + 1] = eAmTs x̂d[i] + A−1
m (eAmTs − Inm )

(
Bmud[i] + σ̂d[i]

)
,

ŷd[i] = Cmx̂d[i], x̂d[0] = C†
my0,

(9)
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where ud(t) is provided by (8), and y0
∆
= Cpx0 is the known initial

output.
Given Am ∈ Rnm×nm is Hurwitz, there exists a positive definite

matrix P ∈ Rnm×nm solving A⊤
mP + PAm = −Q for a given positive

definite matrix Q ∈ Rnm×nm . Define

Λ
∆
=

[
Cm

D
√
P

]
, (10)

where
√
P satisfies P =

√
P

⊤√
P , and D ∈ R(nm−q)×nm is a matrix

that is in the null space of Cm

(√
P
)−1

, i.e.

D
(
Cm

(√
P
)−1

)⊤

= 0 . (11)

Further, let Φ (·) be the nm × nm matrix

Φ (Ts)
∆
=

∫ Ts

0
eΛAmΛ−1(Ts−τ)Λdτ . (12)

The adaptation law is given by

σ̂d[i] = −Φ−1 (Ts) eΛAmΛ−1Ts1nmqỹd[i], (13)

where ỹd[i] = ŷd[i] − yd[i], and 1nmq is given by

1nmq
∆
=

[
Iq

0(nm−q)×q

]
∈ Rnm×q. (14)

4. Analysis of the closed-loop sampled-data system

This section provides the analysis of stability and performance
of the closed-loop SD system with the proposed controller. Also,
the conditions for selection of the control parameters Ts and C(s)
are provided. First, we define a few variables of interest and design
constraints. Let

P(s) ∆
= Cp

(
sIn − Ap + BpF

)−1Bp,

H0(s)
∆
=
(
sIn − Ap + BpF

)−1Bp,

H1(s)
∆
=
(
Iq +

(
M−1(s)P(s) − Iq

)
C(s)

)−1
,

H2(s)
∆
= H0(s) − H0(s)C(s)H1(s)

(
M−1(s)P(s) − Iq

)
,

H3(s)
∆
= H1(s)M−1(s)P(s),

H4(s)
∆
= H1(s)

(
M−1(s)P(s) − Iq

)
,

H5(s)
∆
= H0(s)C(s)H1(s)M−1(s),

G(s) ∆
= H0(s) − H5(s)P(s),

(15)

where F ∈ Rq×n is selected such that Ap − BpF is Hurwitz,
as mentioned in Assumption 2. We define an auxiliary system
with the same input–output mapping as the system (1), using
the state–space matrices (Am, Bm, Cm) of the desired dynamics.
The uncertainties are lumped into a variable denoted by σ (t) in
the auxiliary system. The control input u(t) compensates for the
matched uncertainty σ (t) to recover the desired output tracking
response (introduced in Assumption 2). Let the auxiliary system
be
ẋa(t) = Amxa(t) + Bm (u(t) + σ (t)) , xa(0) = C†

my0,
y(t) = Cmxa(t),

(16)

where xa(t) ∈ Rnm is the state vector, the Laplace transform of σ (t)
is given by

σ (s) = M−1(s) ((P(s) − M(s)) u(s) + P(s)w(s) + Hin(s)x0) ,

with

Hin(s)
∆
= Cp

(
sIn − Ap + BpF

)−1
− Cm

(
sInm − Am

)−1 C†
mCp,

and w(s) is the Laplace transform of w(t) given by

w(t) ∆
= Fx(t) + f (t, x(t)) . (17)

Since the full statemeasurement is not available, Fx(t) is unknown.
Therefore, Fx(t) is added to the uncertainty term f (t, x(t)), and the
addition of the two unknown signals is denoted by w(t).

Remark1. Given thatM(s) does not have anunstable transmission
zero, M−1(s)P(s) is proper and stable. In addition, Assumption 2
implies that sM−1(s)Hin(s) is proper and stable. Therefore, σ (t),
defined in (16), is a casual signal.

Further, for every δ > 0, let

Lδ
∆
=

γ̄1 + δ

δ

(
K(γ̄1+δ) + ∥F∥∞

)
, (18)

where Kδ is introduced in Assumption 1, and γ̄1 is an arbitrarily
small positive constant. It can be shown that the following bound
on w(t) holds

∥wt∥L∞
≤ Lδ ∥xt∥L∞

+ L0. (19)

The design of the controller proceeds by considering a strictly
proper stable transfer function C(s) such that C(0) = Iq. The
selection of C(s) must ensure that

H1(s) is stable, (20)

where H1(s) is defined in (15), and

C(s)M−1(s) is proper. (21)

Also, for a given ρ0, there should exist ρr > ρ0 such that the
following L1-norm condition holds

∥G(s)∥L1
<

ρr − ρ1 − ρ2

Lρrρr + L0
, (22)

where

ρ1
∆
=
s(sIn − Ap + BpF )−1

− sH5(s)Hin(s)

L1

ρ0,

ρ2
∆
=
H2(s)Kg


L1

Mr.
(23)

Remark 2. If the system with state-space matrices (Ap, Bp, Cp)
does not have a non-minimum-phase transmission zero, one can
select the desired system as M(s) = P(s) (as stated in Assump-
tion 2), where P(s) is introduced in (15). Then, we have H1(s) = Iq.
Also, G(s) can be rewritten as

G(s) = H0(s)
(
Iq − C(s)

)
. (24)

Therefore, a filter with sufficiently high bandwidth (i.e., C(s) ≈ Iq),
and high relative degree such that C−1(s)M(s) is proper, always
satisfies the conditions in (20)–(22). In the case (Ap, Bp, Cp) defines
a non-minimum phase system, the selection of C(s) and M(s) that
would verify (20)–(22) is not trivial as reported in Kharisov and
Hovakimyan (2011).

Remark 3. Selection of the filter C(s) provides a trade-off between
performance in terms of disturbance compensation and robustness
in terms of input-delay margin. A mixed-norm optimization of the
filter for L1 adaptive control structure can be found in Jafarnejad-
sani, Sun, Lee, and Hovakimyan (2017).

Let P1 ∈ Rq×q and P2 ∈ R(nm−q)×(nm−q) be positive definite
matrices:

P1
∆
=

(
Cm

√
P

−1√
P

−⊤

C⊤

m

)−1
, P2

∆
= (DD⊤)−1. (25)

Define[
η⊤

1 (t) η⊤

2 (t)
] ∆

= 1⊤

nmqe
ΛAmΛ−1t , (26)
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where η1(t) ∈ Rq×q and η2(t) ∈ R(nm−q)×q, and

κ(Ts)
∆
=

∫ Ts

0

1⊤

nmqe
ΛAmΛ−1(Ts−τ )ΛBm


2
dτ . (27)

Define the function

Γ (Ts)
∆
= α1(Ts)

(sIv − Ao)
−1Bo


L1

+ α2(Ts), (28)

where

α1(Ts)
∆
= max

t∈[0, Ts]

Co
(
eAot − Iv

)
∞

,

α2(Ts)
∆
= max

t∈[0, Ts]

∫ t

0

CoeAo(t−τ )Bo


∞
dτ .

Let

Υ (Ts) =

e−AmTsΦ−1 (Ts) eΛAmΛ−1Ts1nmq


∞

,

Ψ (Ts) =

H5(s)Cm
(
sInm − Am

)−1 (eAmTs − Inm
)

L1
,

Ω1(Ts) =
H2(s)C(s)M−1(s)


L1

(
1 − ∥G(s)∥L1

Lρr

)−1

+ ∥H2(s)∥L1 (Γ (Ts) + Ψ (Ts)) Υ (Ts)
(
1 − ∥G(s)∥L1

Lρr

)−1
,

Θ(Ts) = ∥H3(s)∥L1
LρrΩ1(Ts) +

H4(s)C(s)M−1(s)

L1

+ ∥H4(s)∥L1
(Γ (Ts) + Ψ (Ts)) Υ (Ts) ,

ρ∆ = ∥H3(s)∥L1

(
Lρrρr + L0

)
+
H4(s)Kg


L1

Mr

+
sH1(s)M−1(s)Hin(s)


L1

ρ0,

Ω2(Ts) =
C(s)M−1(s)


L1

+ ∥C(s)∥L1
LρrΩ1(Ts)

+ (Γ (Ts) + Ψ (Ts)) Υ (Ts) ,

ρur = ∥C(s)H3(s)∥L1

(
Lρrρr + L0

)
+
sC(s)H1(s)M−1(s)Hin(s)


L1

ρ0

+
(Iq − C(s)H4(s)

)
Kg

L1

Mr,

(29)

where Hi(·)’s are defined in (15). Next, we introduce the functions

β1(Ts)
∆
= max

t∈[0, Ts]
∥η1(t)∥2 , β2(Ts)

∆
= max

t∈[0, Ts]
∥η2(t)∥2 , (30)

where η1(t) and η2(t) are given in (26). Also

β3(Ts)
∆
= max

t∈[0, Ts]
η3(t, Ts), β4(Ts)

∆
= max

t∈[0, Ts]
η4(t), (31)

where

η3(t, Ts)
∆
=∫ t

0

1⊤
nmqe

ΛAmΛ−1(t−τ )ΛΦ−1 (Ts) eΛAmΛ−1Ts1nmq


2
dτ ,

η4(t)
∆
=
∫ t
0

1⊤
nmqe

ΛAmΛ−1(t−τ )ΛBm


2
dτ .

(32)

For γ̄0 > 0, let

∆1(γ̄0)
∆
= ρ∆ + Θ(Ts)γ̄0,

∆2(γ̄0)
∆
= λmax

(
Λ−⊤PΛ−1)(2

√
q∆1(γ̄0)

Λ−⊤PBm

2

λmin
(
Λ−⊤QΛ−1

) )2

,
(33)

where, ρ∆ and Θ(·) are defined in (29). Also, let

ς (γ̄0, Ts)
∆
= ∥η2 (Ts)∥2

√
∆2(γ̄0)
λmax(P2)

+
√
qκ(Ts)∆1(γ̄0), (34)

where η2(·) is defined in (26) and κ(·) is given in (27).

Finally, define

γ0(γ̄0, Ts)
∆
= β1(Ts)ς (γ̄0, Ts) + β2(Ts)

√
∆2(γ̄0)
λmax(P2)

+ β3(Ts)ς (γ̄0, Ts) +
√
qβ4(Ts)∆1(γ̄0).

(35)

Lemma 4. For all γ̄0 > 0, the following relationships hold:

lim
Ts→0

γ0(γ̄0, Ts) = 0, (36)

where γ0(·, ·) is given in (35).

Proof. It is similar to the proof of Lemma 3.3.1 in Hovakimyan and
Cao (2010) and hence omitted here. ■

Lemma 5. There exist Ts > 0 and arbitrarily small positive constant
γ̄0, such that

γ0(γ̄0, Ts) < γ̄0, Ω1(Ts)γ̄0 < γ̄1, (37)

where γ̄1 is introduced in (18) and γ0(·, ·) is defined in (35), while
Ω1(·) is given in (29).

Proof. It is straightforward to verify that Ω1(Ts) is a bounded
function as Ts tends to zero. In addition, Lemma 4 shows that
γ0(γ̄0, Ts) approaches arbitrarily closely to zero for all γ̄0 with
sufficiently small Ts. Therefore, there always exist constants Ts and
γ̄0 that satisfy the inequalities in (37).

Lemma 6. For arbitrary ξ =

[
y
z

]
∈ Rnm , where y ∈ Rq and

z ∈ R(nm−q), there exist positive definite P1 ∈ Rq×q and P2 ∈

R(nm−q)×(nm−q) such that

ξ⊤
(
Λ−1)⊤PΛ−1ξ = y⊤P1y + z⊤P2z, (38)

where Λ is given in (10), and P1 and P2 are defined in (25).

Proof. The proof of Lemma 6 is found in Hovakimyan and Cao
(2010).

Consider the following closed-loop reference system

ẋref(t) = Apxref(t) + Bp (uref(t) + f (t, xref(t))) ,

uref(s) = Kgr(s) − C(s)σref(s),
yref(t) = Cpxref(t), xref(0) = x0,

(39)

where
σref(s) =

[(P(s) − M(s)) C(s) + M(s)]−1 (P(s) − M(s)) Kgr(s)

+ [(P(s) − M(s)) C(s) + M(s)]−1 (P(s)wref(s) + Hin(s)x0) ,

(40)

and wref(s) is the Laplace transform of wref(t) given by

wref(t) = Fxref(t) + f (t, xref(t)) . (41)

The reference system can be rewritten as

yref(s) = M(s)Kgr(s) + M(s)
(
Iq − C(s)

)
σref(s)

+ Cm
(
sIq − Am

)−1 C†
my0.

(42)

From (42),we notice that the unknownuncertaintyσref(t), given by
the Laplace transform in (40), is mitigated within the bandwidth
of C(s), and the desired response (in Assumption 2) is recovered.
The reference system in (39) defines the achievable performance
by the closed-loop sampled-data system given in (1), (8)–(13),
as the sampling time Ts of the digital controller tends to zero.
In the following, we first prove that σref(t) is bounded, and the
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reference system in (39) is stable. Then, we establish uniform
bounds between the closed-loop system defined by (1), (8)–(13),
and the reference system.

Lemma 7. For the closed-loop reference system in (39), subject to the
conditions in (20)–(22), if ∥x0∥∞ ≤ ρ0, then

∥xref∥L∞
< ρr, (43)

∥uref∥L∞
< ρur, (44)

where ρr is introduced in (22), and ρur is given in (29).

Proof. The proof can be found in Jafarnejadsani (2018). ■

Remark 8. We can rewrite σref(s) in (40) as

σref(s) = H1(s)
(
M−1(s)P(s) − Iq

)
Kgr(s)

+ H1(s)
(
M−1(s)P(s)wref(s) + M−1(s)Hin(s)x0

)
.

Then, Remark 1 implies that σref(s) is casual. In addition, the sta-
bility of H1(s) in (20) together with the results of Lemma 7 implies
that σref(s) is bounded:

∥σref∥L∞
≤ ρ∆, (45)

where ρ∆ is defined in (29).

In the proposed SD control structure, discrete-time output pre-
dictor dynamics are introduced in (9), where the unknown un-
certainty σ (t) (formulated in (16)) is replaced with an adaptation
variable σ̂d[i]. We consider a continuous-time equivalent state-
space model of the predictor dynamics in (9) given by
˙̂x(t) = Amx̂(t) + Bmu(t) + σ̂ (t), x̂(0) = C†

my0,
ŷ(t) = Cmx̂(t),

(46)

where

σ̂ (t) = σ̂d[i], t ∈ [iTs, (i + 1)Ts) , i ∈ Z≥0, (47)

and u(t) is given in (2) and (8). Since σ̂ (t) and u(t) in (46) are
held constant over sampling intervals, we notice that (9) is a step-
invariant discrete-time approximation of (46) such that

ŷ (iTs) = ŷd[i]. (48)

Let x̃(t) = x̂(t) − xa(t), where xa(t) is defined in (16). Then, the
prediction error dynamics between (16) and (46) are given by
˙̃x(t) = Amx̃(t) + σ̂ (t) − Bmσ (t), x̃(0) = 0nm×1,

ỹ(t) = Cmx̃(t),
(49)

where σ̂ (t) is defined in (47).

Lemma 9. Consider the closed-loop system defined by (1), (8)–(13),
and the closed-loop reference system in (39). The following upper
bound holds

∥(xref − x)t∥L∞
≤ Ω1(Ts)

ỹtL∞
,

whereΩ1(·) is given in (29), and ỹ(t) is the prediction error defined in
(49).

Proof. The proof can be found in Jafarnejadsani (2018). ■

Theorem 10. Consider the system in (1) and the controller in (8)–
(13) subject to the conditions in (20)–(22). Assume that Ts is selected
sufficiently small such that the inequalities in (37) hold. If ∥x0∥∞ ≤

ρ0, thenỹL∞
< γ̄0, (50)

∥xref − x∥L∞
< Ω1(Ts)γ̄0, ∥uref − u∥L∞

< Ω2(Ts)γ̄0, (51)

where ỹ(t) is the prediction error defined in (49), and γ̄0 > 0 is a given
arbitrarily small constant that satisfies (37). Also, Ω1(Ts) and Ω2(Ts)
are defined in (29).

Proof. The proof can be found in Jafarnejadsani (2018). ■

Remark 11. Lemmas 4 and 5 indicate that an arbitrarily small
bound γ̄0 on the prediction error can be achieved as Ts goes to zero.
In addition, it can be shown that Ω1(Ts) and Ω2(Ts) are bounded as
Ts tends to zero. Therefore, the uniformbounds in (51) can bemade
arbitrarily small. This implies that the closed-loop sampled-data
system recovers the performance of the continuous-time reference
system in (39) as the sampling time goes to zero.

Corollary 12. The system in (1) with the controller in (8)–(13)
subject to the conditions in (20)–(22), and (37), is semi-globally
practically input to state stable (SPISS) (Lee, 2017;Nesic& Laila, 2002),
if the system defined by the triple (Ap, Bp, Cp) does not have a non-
minimum-phase transmission zero.

Proof. The proof can be found in Jafarnejadsani (2018). ■

5. Simulation examples

Two flight control examples are provided to validate the the-
oretical claims, and to verify the effectiveness of the proposed
SD controller. The first example is the simulation of the lateral
dynamics of F-16 aircraft with two inputs and two outputs. In the
second example, a controller for the F-16 flight-path angle tracking
is developed, where the dynamics from the control input (elevator
deflection) to the flight-path angle is non-minimum-phase and
unstable.

5.1. Aircraft lateral dynamics

Amodel for the lateral dynamics of F-16 aircraft at the airspeed
of V = 502 ft/s and the angle of attack α = 2.11◦, found in Young,
Cao, Hovakimyan, and Lavretsky (2006), is given by

Ap =

⎡⎢⎣ −0.3320 0.064 0.0364 −0.9917
0 0 1 0.0393

−30.6490 0 −3.6784 0.6646
8.5395 0 −0.0254 −0.4764

⎤⎥⎦ ,

Bp =

⎡⎢⎣ 0 0
0 0

−0.7331 0.1315
−0.0319 −0.0620

⎤⎥⎦ , Cp =

[
1 0 0 0
0 1 0 0

]

The state vector of the lateral dynamicsmodel is x(t) = [β(t), φ(t),
ps(t), rs(t)]⊤, where the variables β , φ, ps and rs represent the
angle of sideslip, the roll angle, the stability axis roll and yaw
rates, respectively. The system dynamics are stable, however the
eigenvalues are slow. The objective is to design a control input
ud[i] = [δa[i], δr[i]]⊤, where δa and δr are the aileron and the
rudder deflections, such that the output vector y(t) = [β(t), φ(t)]⊤

tracks the reference command r(t) given by (6), where rd[i] is

rd[i] =

⎡⎣0.2
(
−

0.5
1+eiTs−8 +

1
1+eiTs−30 − 0.5

)
0.2

(
−

0.5
1+eiTs−8 +

1
1+eiTs−30 − 0.2

)
⎤⎦ , i ∈ Z≥0, (52)
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and Ts is the sampling time. The desired tracking dynamics M(s)
are given by the state-space matrices

Am =

⎡⎢⎣−4.0538 −4.5045 −0.8386 −2.0633
1.2602 1.1254 −2.0913 1.0746
2.7591 4.2500 −1.4731 1.3436
3.1833 −1.6250 6.5772 −3.3832

⎤⎥⎦ ,

Bm =

⎡⎢⎣−0.0021 0.1053
−0.0402 0.0347
0.1562 −0.0134

−0.1722 −0.0174

⎤⎥⎦ ,

Cm =

[
0.0234 0.0894 0.0908 0.0597

−0.2073 0.6566 −0.2254 −0.1419

]
.

In this simulation, input uncertainties of the form

fδa (t, x(t)) = 0.01 (|β(t)| + |φ(t)| + ps(t) cos(4t))
+ 0.02rs(t) sin(t) + 0.25 cos(0.8t),

fδr (t, x(t)) = 0.01 (|ps(t)| + |rs(t)| + φ(t) cos(0.7t))
+ 0.02rs(t) sin(4t) + 0.25 sin(1.1t)

are considered. The non-zero initial condition is x0 = [0 rad,
0.06 rad, 0.02 rad/s, −0.02 rad/s]⊤, leading to y0 = [0 rad,
0.06 rad]

⊤. Next, we select the design parameters for the sampled-
data L1 controller. Let ρ0 = Mr = 0.25, Kδ = 0.05, γ̄0 = 0.1,
γ̄1 = 9 × 103, and F = 02×4. With ρr = 6.7 × 103, the uncertainty
bounds Lρr = 0.1172 and L0 = 0.25 (which satisfy (18)), and the
filter

C(s) =

[ 10
s+10 0
0 40

s+40

]
,

the stability conditions in (20) and (22) are met. For the selected
parameters, we can calculate ρ1 = 20.549 and ρ2 = 9.633. Then,
the right hand side of (22) is equal to 8.492, which is larger than
∥G(s)∥L1

= 0.256, and thus the inequity in (22) is verified. Finally,
by selecting the sampling time Ts = 10−7 sec, we have γ0(γ̄0, Ts) =

0.0956 and Ω1(Ts) = 8.996 × 104. Therefore, we can verify that
the inequalities in (37) hold. In Fig. 1, the response of the closed-
loop SD system is shown. The output tracks the desired response
in the presence of the disturbances, as illustrated in Fig. 1(a). The
control input is shown in Fig. 1(b). Fig. 2 shows the response
of the closed-loop SD system for the step reference commands
r(t) = [0.05 rad, 0.2 rad]

⊤, r(t) = [0.075 rad, 0.3 rad]
⊤, and

r(t) = [0.1 rad, 0.4 rad]⊤, in the presence of uncertainties and
time delay of 0.01 sec at the control input. In this simulation, the
sampling time of the SD controller is Ts = 0.01 sec. We notice that
the controller leads to scaled control inputs and outputs for scaled
reference commands.

5.2. Aircraft flight-path angle

We consider the problem of flight-path angle, γ , tracking, using
the elevator deflection, δe, for a longitudinal model of an F-16 air-
craft. The state-space model, from Shkolnikov and Shtessel (2001),
with γ (t) as the output and δe(t) as the input, is non-minimum-
phase and unstable, and is given by the matrices

Ap =

[
−11.707 0 −75.666

0 11.141 −79.908
0.723 0.907 −1.844

]
, Bp =

[ 0
0

0.117

]
,

Cp =
[
0 0 1

]
,

for Mach = 0.7 and altitude of h = 10,000 ft. This system has
an unstable pole at s = 1.051, and a non-minimum-phase zero at
s = 11.141. The state vector is x(t) = [x1(t), x2(t), x3(t)]⊤, and the

Fig. 1. The outputs of the closed-loop lateral dynamics, β(t) and φ(t), track the
desired responses βm(t) and φm(t) for the given reference command in (52). (a) The
outputs, the reference commands, and the desired responses. (b) The control inputs
δa(t) and δr(t).

Fig. 2. Scaled responses of the closed-loop lateral dynamics to scaled reference
inputs. (a) Scaled reference commands and system outputs. (b) Scaled control
inputs.



352 H. Jafarnejadsani, H. Lee and N. Hovakimyan / Automatica 103 (2019) 346–353

Fig. 3. The flight-path angle, γ (t), tracks the desired γm(t) for a sinusoidal reference
command. (a) The output, the reference command, and thedesired response. (b) The
control input δe(t).

output is γ (t) = x3(t). We choose the desired dynamics M(s) and
the filter C(s) as

M(s) = −
469.6 s2 + 1.384 × 104 s + 9.76 × 104

2174 s3 + 7868 s2 + 4348 s + 579.8
,

C(s) =
174

(s + 17)4
.

This choice of M(s) and C(s) satisfies the condition (20). The sam-
pling time of the SD controller is Ts = 0.01 sec. The initial
condition of the simulation is x0 = [0.001, 0, −0.001]⊤, and the
nonlinear input disturbance is given by

f (t, x(t)) = 0.001x1(t)x2(t) cos(5t) + 0.001 sin(x1(t)x2(t))
+ 0.003x2(t)x3(t) sin(3t).

In addition, a delay of 0.03 s is considered at the control input.
A white noise with the power spectral density of 10−10 and the
sample time of 0.01 sec is considered at the measured output.
The simulation results (Fig. 3) indicate that the digital controller
is robust to measurement noise, input delay, and nonlinear dis-
turbances. The closed-loop system with the SD controller is stable
and tracks the desired flight-path angle in the presence of the
uncertainties as illustrated in Fig. 3(a). The control input is shown
in Fig. 3(b). While many output feedback approaches based on
high-gain observer amplify the noise at the control input, the filter
in the SD L1 controller limits the noise amplification at the input
channel.

6. Conclusions

This paper develops an adaptive sampled-data controller for a
class of uncertain MIMO systems, possibly with non-minimum-
phase zeros. Sufficient conditions for robust stability are obtained.

It is shown that the closed-loop SD system recovers the perfor-
mance and robustness of a continuous-time reference system, as
the sampling time of the digital controller tends to zero. This paper
provides a robust approach for digital implementation of output-
feedback controllers. The simulation examples validate the theo-
retical claims. Future directions include relaxing the conservatism
of sufficient conditions in general and a constructive approach for
filter selection for non-minimum phase systems.
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